The Moral Imperative of a Permanent, Human Presence on the Moon, Mars, and Beyond

The Last Photo from the Mars Opportunity Rover

On July 20, 2019 we will celebrate the fiftieth anniversary of the Apollo 11 moon landing. People of my generation thought that the Apollo project was just the first step in what would be steady progress toward the human exploration of the solar system and beyond. In that expectation, we were cruelly disappointed. Partisan politics, a collective failure of will and ambition, and, yes, US victory in the Cold War all played a part, because the US space program of the 1960s through the 1980s was more about perfecting technologies for defeating the Soviet Union than about pursuing knowledge for its own sake. Still, our abandoning the dream of human exploration of space was seen by me and my generation as a great betrayal. And, yes, it was a betrayal, not just of the dreams of my science-loving sisters and brothers of that era, but of all of humankind.

Fifty years have passed and, happily, we have once again recommitted to putting humans on the Moon, Mars, and beyond. It is important that we detach ourselves from the momentary, political motivations of figures like current NASA director and Trump appointee, Jim Bridenstine, and the commercial motivations of entrepreneurs like Elon Musk and Jeff Bezos, however much one appreciates the impetus such figures have provided for a renewed focus on human space exploration. Concentrate, instead, on the more fundamental reasons for putting humans in space.

If it were just a matter of gathering new knowledge of distant planets and moons, human space travel would not be needed. Robots can do that as well as or better than humans, at far lower cost, and with zero risk of harm to human astronauts. But one of the most compelling reasons for human space exploration is precisely because it is difficult, dangerous, and expensive. This was the reason so eloquently voiced by John Kennedy at Rice University in Houston in September of 1962:

Kennedy at Rice University, September 12, 1962

“We choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills.”

We embrace the big challenges because, in doing so, we make ourselves better, smarter, stronger, and more courageous, and our doing that is worth the cost and the risk. Of course there are other difficult challenges. A colleague said to me recently that the internet, robotics, and AI revolutions are this era’s Apollo program. We have certainly made ourselves smarter in this way. What is missing in these initiatives, however, is a moral challenge. There are plenty of ethical questions posed by these new, technical achievements. But mastering these merely technical and intellectual challenges stands little chance of promoting the moral growth of individuals and communities. In this respect, a more appropriate analogue of the challenge of human space exploration would be the challenge of the climate emergency. Mastering that will make us smarter and it will require both individual and collective courage along with other virtues, such as compassion, mercy, self-sacrifice, and generosity. It is also like the challenge of putting humans in deep space in that it is a necessary response to an existential threat to humankind.

That last point brings us to the most fundamental, moral argument for redoubling our efforts to establish a human presence elsewhere than on Earth. The ultimate problem is that the Earth cannot be a permanent home for the human species. It’s only a matter of time. That time will be short, perhaps no more than a few hundred years, if we don’t put a halt to climate change and remediate the harm done by global warming. But if we do solve that problem, it’s still only a matter of time. The time we have left on Earth might be measured on scale of centuries or millennia were the planet to be rendered uninhabitable by another meteor impact with a magnitude like that which caused the Cretaceous extinction. Should we escape that fate by luck or clever preventive measures, it’s still the case that, on a yet longer time scale, Earth will become uninhabitable for reasons of simple physics. It might be only a few hundred million years before solar evolution, with steadily increasing solar radiation, does to the planet what anthropogenic climate change is doing now.

Clever humans can and probably will find ways to accommodate us to living on a planet much warmer than the Earth is now. But, in the end, it will all be for naught if we fail to find a way to establish new homes for human civilization elsewhere in the universe.

Some will say that this argument is an instance of speciesism. It isn’t, for we can choose to take along as many non-human species as we wish, and some, of course, will be necessary for our own survival.

Some will say that the heat death of Earth due to solar evolution is so far in the future as to be of no practical concern for a long, long time to come and so does not require our mastering off-Earth human habitation now. That’s true. There is no immediate necessity. But why wait? It’s a really hard problem, so, the sooner we get started, the better.

Apollo 11

Some will say that a concerted effort to establish a human presence off-Earth will distract attention and divert resources from the more urgent challenge of global warming. That could happen, if we were stupid. But it’s not a zero-sum game. We can tackle both problems at the same time, just as we first went to the Moon while fighting an illegal and immoral war in Vietnam and, perhaps unwisely, building a massive nuclear arsenal and delivery capability. There will also be spill-over effects between both projects, as with the first, really effective solar cells having been developed by Bell labs for use in outer space, not for green electricity generation on Earth.

If we can do it, if we can find a way to transplant human life and civilization to new homes in space, then our descendants millions of years from now will look back to us with the same gratitude that we should feel for our hominid ancestors who first mastered the use of fire some two million years ago. The human project already has a history measured on a scale of millions of years. We need to think about the future of the human project on a similar scale, and we must take seriously our moral obligations to those who will come after us.

Per aspera ad astra.

Andromeda

The Liberal, Environmentalist Argument for the Keystone Pipeline

Don Howard

Like it or not, the global economy still depends on a large, steady supply of oil, natural gas, and refined petroleum products. That must change if we are to solve the problem of carbon dioxide and methane emissions and associated, global climate change. But the nations of the world have yet to evince either the political will or the technical capability to shift us to a totally green energy economy in the near future. All plausible scenarios still leave us dependent upon fossil fuels for decades to come. That being so, demand for fossil fuels, especially oil and natural gas, will remain strong for the foreseeable future. Which brings us to the question of the Keystone pipeline.

Start with some facts. First, the Keystone pipeline already exists and is moving hundreds of thousands of barrels of oil per day from the oil sands area of Alberta and the Bakken region in North Dakota to refineries, storage facilities, and shipping terminals in Illinois, Nebraska, Oklahoma, and Louisiana. Second, the pipeline carries both heavy shale oil and light crude, along with “dilbit,” which is shale oil diluted by lighter materials that are typical by-products of natural gas production. What generates all the excitement and controversy today is only the completion of phase IV of the pipeline, which would functionally replace the segment of the phase I line from Hardesty, Alberta to Steele City, Nebraska, and make possible also the addition to the pipeline of US-produced crude at a station in Baker, Montana, in the Bakken formation. So, the pipeline is built, and oil has been flowing for over four years. The question now is only whether to replace one segment with another, shorter, higher-capacity line.

There are perfectly reasonable questions about environmental risk in some especially environmentally sensitive areas through which the phase IV pipeline would pass, such as the Sand Hills region of Nebraska, and about impacts on some Native American and First Nations lands. These questions must be addressed in ways satisfactory to all relevant parties.

But many of the pipeline’s opponents object to its construction not only because of such local concerns. They object also on broader environmentalist grounds that boil down to opposition to a fossil fuels energy economy in the first place. That objection, however, misses the point that should be the focus of debate. More or less everyone agrees that a green energy economy is the long-term goal. But oil will be needed for decades to come. Oil will be extracted, shipped, refined, and marketed. The question is not whether we should do that. We have to do that. The question is how to do it in the most environmentally and socially responsible way. Which brings us back to the question of the Keystone pipeline.

There are two main technologies for overland shipping of large volumes of oil: pipelines and rail. So the only real question that should be up for debate concerns which is the safer, more environmentally and socially responsible way to move large volumes of oil from producing fields to refineries and on to markets. And the answer to that question is, indisputably, pipeline transport.

At present, the Bakken region is producing oil at a prodigious rate, about one million barrels per day, far outpacing our capacity to ship it with existing pipelines. The result is that Bakken oil is moving by rail. But US carriers lack the tanker car and engine capacity, as well as bandwidth on the rails, to move the oil. That means that hundreds of thousands of older and poorly designed tank cars (DOT 111 model) have been pressed into service, while engines and track have been diverted from delivering other essential goods, such as grain from the Great Plains, to delivering oil. The economic cost to farmers, food companies, and consumers is huge. We are all paying a hidden tax at the supermarket for our lack of critical oil transport infrastructure. (Federman 2014.)

But that economic cost is minor compared with the huge environmental risks and social impacts of transporting oil by rail in antiquated rolling stock over rail lines pushed well beyond designed capacity. Nor are the risks and impacts merely theoretical.

The single largest, transportation related oil spill on land in the US and Canada over the past ten years was not the Enbridge pipeline spill in Michigan in July 2010 or the Lake Buffalo spill in Alberta in April of 2011. No it was this:

Lac_megantic_burning
Lac-Mégantic, Quebec oil train disaster. July 6, 2013.

July 6, 2013 in Lac-Mégantic, Quebec. A 74-car trainload of Bakken crude exploded in the center of town. Nearly 5,000 metric tons of oil were spilled, at least forty-two people were killed, and thirty buildings were destroyed. This is the price we pay for not being able to ship that oil by pipeline.

And there is more. On November 30, 2013, a train carrying 2.7 million gallons of Bakken crude derailed and exploded outside of Aliceville, Alabama. On December 30, 2013, an oil train collided with another train outside of Casselton, North Dakota, spilling more than 400,000 gallons of oil.

Then on April 30 of this year, an oil train derailed and exploded in downtown Lynchburg, Virginia, spilling perhaps as much as 30,000 gallons of oil, some of it into the James River:

Lyncburg, Virginia oil train wreck. April 30, 2014.
Lyncburg, Virginia oil train wreck. April 30, 2014.

Fortunately no one was killed, and the damage was much less extensive than in the Lac-Mégantic derailment.

These are only the most serious of numerous recent oil train accidents. According to one estimate, in 2013 alone, oil train accidents led to the spilling of more than 1.15 million gallons of oil just in the United States. The spillage from pipeline accidents pales in comparison.

Two additional factors increase the risk from rail transport. The first concerns specifically the Bakken crude that constitutes the bulk of what is now being shipped by rail. It is that some are convinced that Bakken crude is an uncommonly volatile mix of oil and lighter, hence more explosive and combustible components like butane and propane. Some are calling for pre-processing to remove those components before shipping. But this would be less of a problem with pipeline shipment. (Dawson and Gold 2014.)

The other factor increasing the risk from rail transport is that rail lines tend to pass right through the hearts of densely populated urban areas, whereas oil pipelines are deliberately constructed so as to avoid urban areas to the greatest extent possible. For example, Norfolk-Southern alone ships between 13 and 24 million gallons of North Dakota oil through the center of my home town, South Bend, Indiana, every week. That rail line passes two blocks away from my son’s high school. (Widener 2014.) And, yes, there is also the threat of terrorist attacks, a really worrisome prospect in city centers.

The point is simply this. We have to move oil from oil fields to refineries and distribution centers. Pipelines break, but our recent experience has shown that it is far more risky to move the oil by rail, which is the only alternative. And those risks extend not just to environmental consequences but to human suffering and economic loss.

Of course pipelines also fail, and when they do, the consequences can be quite serious. But it is instructive to examine some of the recent pipeline spills, such as the mentioned accidents in Alberta and Michigan. In most such cases, the problems go back to aging pipeline infrastructure combined with poor maintenance and monitoring. But the lesson from those episodes is not to abandon pipelines for rail transport. It is to replace aging pipelines with new ones, which is exactly what Enbridge did after the Michigan spill. (Enbridge 2014.)

The recent decline in oil prices could change the equation, squeezing the profit margin on crude from Alberta tar sands and the Bakken formation. The break-even point for Bakken crude is now estimated to be around $73/barrel. And some of the tar sands producers, especially those smaller firms extracting harder-to-produce oil, are already in trouble. But oil would have to fall well below $70/barrel and stay there for some time before any significant effect on production will be seen, and, as oil prices fall, energy from renewable sources like wind and solar will become less competitive, thus probably increasing demand for fossil fuels. Moreover, other producer nations, like Saudia Arabia, are far more heavily affected by oil price declines, so if there are to be production cutbacks, those are far more likely to occur with other sources of oil. It is, thus, hard to imagine economic circumstances that would lead to a halt or a significant decline in production from the sources served by the Keystone pipeline. (Randall 2014.)

So let’s summarize the argument. Oil will be an essential part of the global energy economy for decades to come. It will be extracted and shipped. Overland shipment is possible only by pipeline or rail. Rail transport of oil is far more risky from both an environmental and social point of view. If, therefore, you are an environmentalist who also cares about human well being, you will support the Keystone pipeline. It – and other such pipeline projects – are the only environmentally and socially responsible choice.

References:

Chester Dawson and Arthur Gold. “Accuracy of Bakken Volatility Tests Face More Challenges.” Wall Street Journal. November 12, 2014.

Enbridge. “Line 6B Phase 2 Replacement Project.” 2014.

Adam Federman. “‘The infrastructure isn’t there’: Why Shipping Bakken Crude Oil by Rail Is a Disaster in the Making.” Salon. June 29, 2014.

Tom Randall. “Break-Even Points for U.S. Shale Oil.” Bloomberg. October 17, 2014.

Adam Widener. “15 Finds Out: Through Your Backyard.” Wane.com. October 30, 2014.

“I Sing the Body Electric”

Don Howard

(Originally written for presentation as part of a panel discussion on “Machine/Human Interface” at the 2013 Fall conference, “Fearfully and Wonderfully Made: The Body and Human Identity,” Notre Dame Center for Ethics and Culture, 8 November 2013.)

Our topic today is supposed to be the “machine/human interface.” But I’m not going to talk about that, at least not under that description. Why not? The main reason, to be elaborated in a moment, is that the metaphor of the “interface” entails assumptions about the technology of biomechanical and bioelectric engineering that are already surprisingly obsolete. And therein lies a lesson of paramount importance for those of us interested in technoethics, namely, that the pace of technological change is such as often to leave us plodding humanists arguing about the problems of yesterday, not the problems of tomorrow. Some see here a tragic irony of modernity, that moral reflection cannot, perhaps as a matter of principle, keep pace with technical change. We plead the excuse that careful and thorough philosophical and theological reflection take time. But I don’t buy that. Engineering problems are just as hard as philosophical ones. The difference is that the engineers hunker down and do the work, whereas we humanists are a lazy bunch. And we definitely don’t spend enough time reading the technical literature if our goal is to see over the horizon.

Biocompatible nanoscale wiring embedded in synthetic tissue.
Biocompatible nanoscale wiring embedded in synthetic tissue.

Back to the issue of the moment. What’s wrong with the “interface” metaphor? It’s that it assumes a spatially localized mechanism and a spatially localized part of a human that meet or join in a topologically simple way, in a plane or a plug and socket, perhaps like a usb port in one’s temple. We all remember Commander Data’s data port, which looked suspiciously like a 1990s-vintage avionics connector. There are machine/human or machine/animal interfaces of that kind already. They are known, collectively, as “brain-computer-interfaces” or BCIs, and they have already made possible some remarkable feats, such as partial restoration of hearing in the deaf, direct brain control of a prosthesis, implanting false memories in a rat, and downloading a rat’s memory of how to press a lever to get food and then uploading the memory after the original memory has been chemically destroyed. And there will be more such.

The problem for us, today, is that plugs, and ports, and all such interfaces are already an inelegant technology that represents no more than a transitional form, one that will soon seem as quaint as a crank starter for an automobile, a dial on a telephone, or broadcast television. What the future will be could have been glimpsed in an announcement from just over a year ago. A joint MIT, Harvard, and Boston Children’s Hospital research team led by Robert Langer, Charles Lieber, and Daniel Kohane developed a technique for growing synthetic biological tissue on a substrate containing biocompatible, nanoscale wires, the wiring eventually becoming a permanent part of the fully-grown tissue (Tian et al. 2012). This announcement came seven weeks after the announcement in London of the first ever successful implantation of a synthetic organ, a fully-functional trachea grown from the patient’s own stem cells, work led by the pioneering researcher, Paolo Macchiarini (Melnick 2012). Taken together, these two announcements opened a window on a world that will be remarkably different from the one we inhabit today.

The near-term professed aim of the work on nanoscale wiring implanted in synthetic tissue is to provide sensing and remote adjustment capabilities with implants. But the mind quickly runs to far more exotic scenarios. Wouldn’t you like full-color, video tattoos, ones that you can turn off for a day in the office and turn on for a night of clubbing, all thanks to grafted, synthetic nanowired skin? Or what about vastly enhanced control capabilities for a synthetic heart the pumping rate and capacity of which could be fine-tuned to changing demands and environmental circumstances, with actuators in the heart responding to data from sensors in the lung and limbs? And if we can implant wiring, then, in principle, we can turn the body or any part of it into a computer.

With that the boundary between human and machine dissolves. The human is a synthetic machine, all the way down to the sub-cellular level. And the synthetic machine is, itself, literally, a living organism. No plugs, ports, and sockets. No interfaces, except in the most abstract, conceptual sense. The natural and the artificial merge in a seamlessly integrated whole. I am Watson; Deep Blue is me.

Here lies the really important challenge from the AI and robotics side to received notions of the body and human identity, namely, the deep integration of computing and electronics as a functional part of the human body, essential in ever more cases and ways to the maintenance of life and the healthy functioning of the person.
Such extreme, deep integration of computing and electronics with the human body surely elicits in most people a sense that we have crossed a boundary that shouldn’t be crossed. But explaining how and why is not easy. After all, most of us have no problem with prosthetic limbs, even those directly actuated by the brain, nor with pace makers, cochlear implants, or any of the other now long domesticated, implantable, artificial, electronic devices that we use to enhance and prolong life. Should we think differently about merely shrinking the scale of the implants and increasing the computing power? “Proceed with caution” is good advice with almost all technical innovations. But “do not enter” seems more the sentiment of many when first confronted by the prospect of such enhanced human-electronic integration. Why?

One guess is that boundaries are important for defining personhood, the skin being the first and most salient. Self is what lies within; other is without. The topologically simple “interface” allows us still to preserve a notion of boundedness, even if some of the boundaries are wholly under the skin, as with a pacemaker. But the boundedness of the person is at risk with integrated nanoscale electronics.

Control is surely another important issue implicated by enhanced human-electronic integration. One of the main points of the new research is precisely to afford greater capabilities for control from the outside. The aim, at present, is therapeutic, as with our current abilities to recharge and reprogram a pacemaker via RF signals. But anxieties about loss of control already arise with such devices, as witness Dick Cheney’s turning off the wi-fi capability in his implanted defibrillator. Integrated nanoscale electronics brings with it the technical possibility of much more extensive and intrusive interventions running the gamut from malicious hacking to sinister social and psychological manipulation.

Integrity might name another aspect of personhood put at risk by the dissolution of the machine-human distinction. But it is harder to explain in non-metaphorical terms wherein this integrity consists – “oneness” and “wholeness” are just synonyms, not explicanda – and, perhaps for that reason, it is harder to say exactly how integrated nanoscale electronics threatens the integrity of the human person. After all, the reason why such technology is novel and important is, precisely, that it is so deeply and thoroughly integrated with the body. A machine-human hybrid wouldn’t be less integrated, it would just be differently integrated. And it can’t be that bodily and personal integrity are threatened by the mere incorporation of something alien within the body, for then a hip replacement or an organ transplant would equally threaten human integrity, as would a cheese sandwich.

A blurring or transgressing of bodily boundaries and a loss of personal control are both very definitely threatened by one of the more noteworthy technical possibilities deriving from integrated nanoscale electronics, which is that wired bodies can be put into direct communication with one another all the way down at the cellular level and below. If my doctor can get real-time data about the performance of an implanted, wired organ and can reprogram some of its functions, then it’s only a short step to my becoming part of a network of linked human computers. The technical infrastructure for creating the Borg Collective has arrived. You will be assimilated. Resistance is futile. Were this our future, it would entail a radical transformation in the concept of human personhood, one dense with implications for psychology, philosophy, theology, and even the law.

Or would it? We are already, in a sense, spatially extended and socially entangled persons. I am who I am thanks in no small measure to the pattern of my relationships with others. Today those relationships are mediated by words and pheromones. Should adding Bluetooth make a big difference? This might be one of those situations in which a difference of degree becomes a difference in kind, for RF networking down to the nanoscale would bring with it dramatically enhanced capabilities for extensive, real-time, coordination.

On the other hand, science in an entirely different domain has recently forced us to think about the possibility that the human person really is and always has been socially networked, not an atomic individual, and this at a very basic, biological level. Study of what is termed the “human microbiome,” the microbial ecosystem that each of us hosts, has made many surprising new discoveries. For one thing, we now understand that there are vastly more microbial genes contained within and upon our bodies than somatic genes. In that sense, I am, from a genetic point of view, much more than just my “own” DNA, so much so that some thinkers now argue that the human person should be viewed not as an individual, but as a collective. Moreover, we are learning that our microbes are crucial to much more than just digestion. They play a vital role in things like mood regulation, recent work pointing to connections between, say, depression and our gut bacteria colonies, microbial purges and transplants now being suggested as therapies for psychological disorders. This is interesting because we tend to think of mood and state of mind as being much more intimately related to personhood than the accident of the foodstuffs passing through our bodies. There is new evidence that our microbes play an essential role in immune response. One study released just a couple of days ago suggested a role for gut bacteria in cases of severe rheumatoid arthritis, for example (Scher et al. 2013). This is interesting because the immune system is deeply implicated in any discussion of the self-other distinction.

Most relevant to the foregoing discussion, however, is new evidence that our regularly exchanging microbes when we sneeze, shake hands, and share work surfaces does much more than communicate disease. It establishes enduring, shared, microbial communities among people who more regularly group together, from families, friends, and office mates to church groups and neighborhoods. And some researchers think that this sharing of microbial communities plays a crucial role in our subtle, only half-conscious sense of wellness and belonging when we are with our family and friends rather than total strangers. Indeed, the definition of “stranger” might now have to be “one with whom I share comparatively few microbial types.” In other words, my being as part of my essence a socially networked individual might already occur down at the microbial level. If so, that is important, because it means that purely natural, as opposed to artificial, circumstances already put serious pressure on the notion of the self as something wholly contained within one’s skin.

We started with my challenging the notion of the “interface” as the most helpful metaphor for understanding the ever more sophisticated interminglings of computers and biological humans that are now within our technical reach. We talked about new technologies for growing artificial human tissue with embedded, nanoscale, biocompatible wiring, which implies a deep integration of electronics and computing of a kind that annihilates the distinction between human and the machine, perhaps also the distinction between the natural and the artificial. And we ended with a vision of such wired persons becoming thereby members of highly interconnected social networks in which the bandwidth available for those interconnections is such as perhaps to make obsolete the notion of the atomic individual.

We face a new world. It simply won’t do to stamp our feet and just say “no.” The technology will move forward at best only a little slowed down by fretting and harangue from the humanists. The important question is not “whether?”, but “how?” Philosophers, theologians, and thoughtful people of every kind, including scientists and engineers, must be part of that conversation.

References

Melnick, Meredith (2012). “Cancer Patient Gets World’s First Artificial Trachea.” Time Magazine, July 8, 2012. http://healthland.time.com/2011/07/08/cancer-patient-gets-worlds-first-artificial-trachea/

Scher, J. U. et al. (2013). “Expansion of Intestinal Prevotella copri Correlates with Enhanced Susceptibility to Arthritis. eLife 2 (0): e01202 DOI: 10.7554/eLife.01202#sthash.b3jK5FW4.dpuf

Tian, Bozhi et al. (2012). “Macroporous Nanowire Nanoelectronic Scaffolds for Synthetic Tissues.” Nature Materials 11, 986-994.