Nuclear Options: What Is Not in the Interim Agreement with Iran

Don Howard

No one wants war with Iran over its nuclear ambitions. But the euphoria over the EU3+3 interim agreement with Iran, as well as many of the political attacks on the agreement, obscure core technical issues that should be fundamental to any assessment of what has really been achieved. There is no denying that much has been gained by way of Iran’s agreeing temporarily to cease uranium enrichment beyond the 5% level necessary for energy production and its agreeing to on-site inspections at its Fordow and Natanz facilities. But important questions remain about what is not included in the interim agreement. Here are four issues that should be more prominent in the debate:

1. The Interim Agreement Mandates No Reduction in Iran’s Capability for Uranium Enrichment. Iran agrees to cease uranium enrichment beyond the 5% level necessary for energy production and not to expand or enhance its uranium enrichment capabilities, for the duration of the interim agreement. Moreover, Iran agrees to dilute half of its 20%-enriched uranium hexaflouride (UF6) to a 5% level and to convert the remaining half to uranium oxide (UO2) for use in making fuel for its Terhran research reactor. But Iran has not agreed to any permanent reduction of its capability for uranium enrichment, a capability that significantly exceeds what is necessary for energy production. It is hoped that a yet-to-be-negotiated, long-term agreement will include a reduction in that capability. But the interim agreement requires no such reduction. At any moment, Iran could resume enrichment to bomb-grade levels. Moreover, the UF6 that is to be converted to UO2 can be reconverted to UF6 and then further enriched.

Arak Heavy Water Reactor
Arak Heavy Water Reactor

2. The Interim Agreement Requires No Inspections at the Arak (IR-40) Heavy Water Reactor. As explained in a helpful recent article by Jeremy Bernstein, the Arak reactor is central to any evaluation of Iran’s nuclear ambitions. It is not designed as a reactor for power generation. Though Iran says that the reactor will be used to produce medical isotopes, its most plausible purpose is to be a breeder reactor for the production of plutonium, which is the other standard fuel for atomic weapons that rely upon the process of nuclear fission (as with the North Korean bomb). It was Iran’s refusal to allow on-site inspections at the Arak reactor that stalled the talks a couple of weeks ago when France demanded more access to Arak. The new interim agreement does require Iran to provide to the International Atomic Energy Agency (IAEA) an updated “Design Information Questionnaire” regarding the Arak reactor, it stipulates that there will be no “further advances of [Iran’s] activities at Arak, it obligates Iran to take “steps to agree with the IAEA on conclusion of the Safeguards Approach for the reactor at Arak” (whatever that means), and Iran agrees to do no reprocessing of spent fuel (the main purpose of which would be to extract plutonium) and not to construct reprocessing facilities. But the interim agreement does not obligate Iran to allow on-site inspections at Arak. Inspections are stipulated for the Fordow and Natanz uranium enrichment facilities, but not at Arak. Iran’s intransigence on this point should give us pause as we try to determine the real purpose of that reactor. If plutonium production is the goal, then our obsession with Iran’s uranium enrichment capability could be distracting us from a more serious threat. A quick route to an Iranian atomic bomb could well be via plutonium produced at Arak. And, at present, Iran has agreed to no degradation of this potential plutonium production capability.

3. The Interim Agreement Does Not Address the Question of Weapons Delivery Systems. Iran is a technically sophisticated nation that has made impressive advances in missile technology in recent years. Much of this missile technology was borrowed from earlier Russian and Korean models. But the new, solid-fuel, Sejil-2 rocket, which was first tested five years ago, is an original Iranian design. It has an impressive, 2,000-km range with a 750 kg payload capacity and anti-radar coatings. The Sejil-2 could put a nuclear warhead on a target as far away as Cairo, Athens, or Kiev. Moreover, Iran has been making gains in its guidance technology.

That we should be paying attention to Iranian weapons delivery capabilities was made clear when, two days after the announcement of the interim agreement, Brigadier General Hossein Salami, the Lieutenant Commander of the Iranian Revolutionary Guard Corps IRGC), announced that Iran’s indigenous ballistic missile capability had recently achieved a “near zero” margin of error in targeting accuracy.

That it was General Salami who made the announcement about advances in Iranian ballistic missile technology reminds us of a political, not technical, issue that has also received insufficient attention in the public debate about the interim agreement. The question is, “Who is really in control?” The interim agreement was negotiated by Iranian Foreign Minister Mohammed Javad Zarif on behalf of the government of President Hassan Rouhani. But the Revolutionary Guard functions as almost a shadow government, with considerable independent authority. And much of the most impressive Iranian ballistic missile research and development has been conducted in facilities under IRGC control, such as the IRGC missile base at Bid Kaneh, where a mysterious explosion during a missile test in November 2011 killed General Hassan Tehrani Moqaddam, who was the head of the IRGC’s “Arms and Military Equipment Self-Sufficiency Program.”

4. The Interim Agreement Does Not Address Aspects of Nuclear Weapons Technology Aside from the Production of Fissile Materials. Nothing in the interim agreement restricts Iran’s ability to continue developing other technologies essential to nuclear weapons production, such as timing circuitry, detonators, and refined conventional explosives techniques involved in the assembly of a critical mass of fissile material. It is perhaps not well and widely enough understood that some of the bigger technical challenges for a nation seeking nuclear weapons lie not in the production of fissile material but in areas such as these. Consider the basic design of a plutonium bomb of the kind dropped on Nagasaki. A critical mass of plutonium is achieved by compressing the plutonium with a spherical blast wave from spherical shell of conventional explosives. The precise shaping of those conventional explosive charges and their precise, simultaneous detonation are among the most difficult technical challenges in bomb design and manufacture. By contrast, while enriching uranium and breeding plutonium require a major technical infrastructure, the physical, chemical, and engineering processes involved are widely understood and, in principle, not all that difficult to achieve. But the interim agreement places no obstacles in the way of research and development on these other aspects of nuclear weapons design. Iran is free to pursue such research as vigorously as it will and to produce a fully functional nuclear weapon awaiting only the insertion of the fissile material.

An assessment of what has been achieved with the interim agreement depends crucially upon a prior assessment of Iran’s goals with respect to nuclear weapons capability. If Iran’s aim had been to produce nuclear weapons as soon as possible, then the interim agreement at least slows down progress toward that goal. But another view is that Iran’s aim all along has been to develop the basic technical infrastructure for the rapid production of bomb-grade fissile material for use if and when it chooses. If that is Iran’s aim, then the interim agreement achieves much less by way of delaying progress to the goal.

We have to wait and see how the interim agreement works. But the celebration of seeming progress on the diplomatic front must be tempered by a clear understanding of the technical issues that are not addressed in the interim agreement, issues that must be the focus of any, longer term, follow-on agreement. Should there be no progress on enrichment capabilities, the Arak reactor, delivery systems, and the fundamentals of bomb design, then options other than diplomacy might have to be explored, starting with the re-imposition of sanctions.

Robots on the Road: The Moral Imperative of the Driverless Car

Don Howard

Driverless cars are a reality, not just in California and not just as test vehicles being run by Google. They are now legal in three states: California, Florida, and Nevada. Semi-autonomous vehicles are already the norm, incorporating capabilities like adaptive cruise control and braking, rear-collision prevention, and self-parking. All of the basic technical problems have been solved, although work is still to be done on problems like sensor reliability, robust GPS connections, and security against hacking. Current design concepts enable easy integration with existing driver-controlled vehicles, which will make possible a smooth transition as the percentage of driverless cars on the road rises steadily. Every major manufacturer has announced plans to market fully autonomous vehicles within the next few years, Volvo, for example, promises to have them in the showroom by 2018. The question is not “whether?”, but “when?”

And the answer to that question is, “as soon as humanly possible,” this rapid transition in transportation technology being among the foremost moral imperatives of the day. We must do this, and we must do it now, for moral reasons. Here are three such reasons.

1. We will save over one million lives per year.

Approximately 1.24 million people die every year, world-wide, from automobile accidents, with somewhere between 20 million and 50 million people suffering non-fatal injuries (WHO 2013a). The Campaign for Global Road Safety labels this an “epidemic” of “crisis proportions” (Watkins 2012). Can you name any other single technology or technological system that kills and injures at such a rate? Can you think of any even remotely comparable example of our having compromised human health and safety for the sake of convenience and economic gain?

Accident_2010But as driverless cars replace driver-controlled cars, we will reduce the rate of death and injury to near zero. This is because the single largest cause of death and injury from automobile accidents is driver impairment, whether through drunkenness, stupidity, sleep deprivation, road rage, inattention, or poor driver training. All of that goes away with the driverless car, as will contributing causes like limited human sensing capabilities. There will still be equipment failures, and so there will still be accidents, but equipment failure represents only a tiny fraction of the causes of automobile accidents. There are new risks, such as hacking, but there are technical ways to reduce such risks.

Thus, the most rapid possible transition to a transportation system built around autonomous vehicles will save one million lives and prevent as many as fifty million non-fatal injuries annually. And this transition entails only the most minimal economic cost, with no serious negative impact of any other kind. In my mind, then, a rapid transition to a transportation system designed around the driverless car is a moral imperative. Any delay whatsoever, whether on the part of designers, manufacturers, regulators, or consumers will be a moral failing on a monumental scale. If you have the technical capability to prevent so much death and suffering but do nothing or even drag your feet, then you have blood on your hands. I’m sorry to be so blunt, but I see no way around that conclusion.

2. The lives of the disabled will be enriched.

Consider first the blind. The World Health Organization estimates that there are 39 million blind people around the world (WHO 2013b). Since 90% of those people live in the developing world, not all of them have access even to adequate roads, nor can they afford a vehicle of any kind. But many of them do and can. The driverless car restores to the blind more or less total mobility under individual, independent control. Can you think of any other technical innovation that will, by itself, so dramatically empower the disabled and enhance the quality of their lives? I cannot. Add to the list the amputee just returned from Afghanistan, the brilliant mind trapped in a body crippled by cerebral palsy, your octagenarian grandparents, and your teenaged son on his way home from a party. Get the picture?

If you have the means to help so many people lead more fulfilling and more independent lives and you do nothing, then you have done a serious wrong.

3. Our failing cities will be revitalized.

Think now mainly of the United States. After the devolution of our manufacturing economy and the export of so many manufacturing jobs overseas, the single largest cause of the decline of American cities, especially mid-size cities in the industrial heartland, has been the exodus of the white middle class to the suburbs. And that exodus was driven, if you will, by the rapid rise in private automobile ownership, which made possible one’s working and living in widely separated locations. Once that transition was complete, with most of us dependent upon the private automobile for transportation, the commercial cores of our cities were destroyed as congestion and lack of access to parking pushed shops and restaurants out to the suburbs. Many people still drive to work in our cities, but the department stores, even the supermarkets and the pharmacies are gone. Once that commercial infrastructure goes, then even those who might otherwise want to live in town find it hard to do so.

The solution is at hand. Combine the driverless car with the zip car. As an alternative to the private ownership of autonomous cars, let people buy membership in a driverless zip car program. Pay a modest annual fee and a modest per-mile charge, perhaps also carry your own insurance. Then, whenever you need a ride, click the app on your mobile phone, the zip car takes you wherever you need to go, then hurries off to ferry the next passenger to another destination. When you are done with your shopping or your night on the town, click again and the driverless zip car shows up at the restaurant door. You don’t have to worry about parking. With that, the single largest impediment to the return of commercial business to our city centers is gone.

The impact will be differential. Megacities like New York, with good public transportation, will benefit less, though a big disincentive to my driving into Manhattan or midtown Chicago is, again, the problem of parking. But the impact on cities like South Bend could be enormous.

I happen to think that restoring our failing cities is a moral imperative, because more than just a flourishing business economy is implicated, like adequate funding for public schools, but about that we might disagree. Surely, though, you agree that, if it doesn’t rise to the level of a moral imperative, it would be at least a social good were we to make our cities thrive again.

So there you have three reasons why the most rapid possible transition to a transportation system based on the driverless car is a moral imperative. Indeed, it is one of the most compelling moral challenges of our day. If we have the means to save one million lives a year, and we do, then we must do all that we can as quickly as we can to bring about that change.

Yet many people resist the idea. To me, that’s a great puzzle. We are all now perfectly comfortable with air travel in totally autonomous aircraft that can and often do fly almost gate to gate entirely on autopilot. Yes, the human pilot is in the cabin to monitor the controls and deal with any problems that might arise, as will be the case with the “driver” in driverless cars, at least for the near term. But many of the most serious airplane accidents these days are due to human error. The recent Asiana Airlines crash upon landing at San Francisco in July was evidently due to pilot error. One of the most edifying recent examples is the crash of Air France flight 447 from Rio to Paris in June of 2009. A sensor malfunction due to ice crystals caused the autopilot to disengage as per its design specifications, but then the human crew reacted wrongly to turbulence, putting the aircraft into a stall. In this case, the aircraft probably would have performed better had the switch to manual not been designed into the system (BEA 2012). If we can safely fly thousands of aircraft and tens of thousands of passengers around the world every day on totally automated aircraft, we can surely do the same with automobiles.

And if we can do it, then we must.

Acknowledgement:

Many thanks to Mark P. Mills (http://www.forbes.com/sites/markpmills/)
for helpful and stimulating conversation about the issues addressed here.

References:

BEA 2012. Final Report On the Accident on 1st June 2009 to the Airbus A330-203 Registered F-GZCP Operated by Air France Flight AF 447 Rio de Janeiro – Paris. Bureau d’Enquêtes et d’Analyses pour la sécurité de l’aviation civile. Paris.

Watkins, Kevin 2012. Safe and Sustainable Roads: An Agenda for Rio+20. The Campaign for Global Road Safety. http://www.makeroadssafe.org/publications/Documents/Rio_20_Report_lr.pdf

WHO 2013a. Global Status Report on Road Safety 2013: Supporting a Decade of Action. World Health Organization. http://www.who.int/iris/bitstream/10665/78256/1/9789241564564_eng.pdf

WHO 2013b. “Visual Impairment and Blindness.” Fact Sheet No. 282, updated October 2013. World Health Organization. http://www.who.int/mediacentre/factsheets/fs282/en/index.html

“I Sing the Body Electric”

Don Howard

(Originally written for presentation as part of a panel discussion on “Machine/Human Interface” at the 2013 Fall conference, “Fearfully and Wonderfully Made: The Body and Human Identity,” Notre Dame Center for Ethics and Culture, 8 November 2013.)

Our topic today is supposed to be the “machine/human interface.” But I’m not going to talk about that, at least not under that description. Why not? The main reason, to be elaborated in a moment, is that the metaphor of the “interface” entails assumptions about the technology of biomechanical and bioelectric engineering that are already surprisingly obsolete. And therein lies a lesson of paramount importance for those of us interested in technoethics, namely, that the pace of technological change is such as often to leave us plodding humanists arguing about the problems of yesterday, not the problems of tomorrow. Some see here a tragic irony of modernity, that moral reflection cannot, perhaps as a matter of principle, keep pace with technical change. We plead the excuse that careful and thorough philosophical and theological reflection take time. But I don’t buy that. Engineering problems are just as hard as philosophical ones. The difference is that the engineers hunker down and do the work, whereas we humanists are a lazy bunch. And we definitely don’t spend enough time reading the technical literature if our goal is to see over the horizon.

Biocompatible nanoscale wiring embedded in synthetic tissue.
Biocompatible nanoscale wiring embedded in synthetic tissue.

Back to the issue of the moment. What’s wrong with the “interface” metaphor? It’s that it assumes a spatially localized mechanism and a spatially localized part of a human that meet or join in a topologically simple way, in a plane or a plug and socket, perhaps like a usb port in one’s temple. We all remember Commander Data’s data port, which looked suspiciously like a 1990s-vintage avionics connector. There are machine/human or machine/animal interfaces of that kind already. They are known, collectively, as “brain-computer-interfaces” or BCIs, and they have already made possible some remarkable feats, such as partial restoration of hearing in the deaf, direct brain control of a prosthesis, implanting false memories in a rat, and downloading a rat’s memory of how to press a lever to get food and then uploading the memory after the original memory has been chemically destroyed. And there will be more such.

The problem for us, today, is that plugs, and ports, and all such interfaces are already an inelegant technology that represents no more than a transitional form, one that will soon seem as quaint as a crank starter for an automobile, a dial on a telephone, or broadcast television. What the future will be could have been glimpsed in an announcement from just over a year ago. A joint MIT, Harvard, and Boston Children’s Hospital research team led by Robert Langer, Charles Lieber, and Daniel Kohane developed a technique for growing synthetic biological tissue on a substrate containing biocompatible, nanoscale wires, the wiring eventually becoming a permanent part of the fully-grown tissue (Tian et al. 2012). This announcement came seven weeks after the announcement in London of the first ever successful implantation of a synthetic organ, a fully-functional trachea grown from the patient’s own stem cells, work led by the pioneering researcher, Paolo Macchiarini (Melnick 2012). Taken together, these two announcements opened a window on a world that will be remarkably different from the one we inhabit today.

The near-term professed aim of the work on nanoscale wiring implanted in synthetic tissue is to provide sensing and remote adjustment capabilities with implants. But the mind quickly runs to far more exotic scenarios. Wouldn’t you like full-color, video tattoos, ones that you can turn off for a day in the office and turn on for a night of clubbing, all thanks to grafted, synthetic nanowired skin? Or what about vastly enhanced control capabilities for a synthetic heart the pumping rate and capacity of which could be fine-tuned to changing demands and environmental circumstances, with actuators in the heart responding to data from sensors in the lung and limbs? And if we can implant wiring, then, in principle, we can turn the body or any part of it into a computer.

With that the boundary between human and machine dissolves. The human is a synthetic machine, all the way down to the sub-cellular level. And the synthetic machine is, itself, literally, a living organism. No plugs, ports, and sockets. No interfaces, except in the most abstract, conceptual sense. The natural and the artificial merge in a seamlessly integrated whole. I am Watson; Deep Blue is me.

Here lies the really important challenge from the AI and robotics side to received notions of the body and human identity, namely, the deep integration of computing and electronics as a functional part of the human body, essential in ever more cases and ways to the maintenance of life and the healthy functioning of the person.
Such extreme, deep integration of computing and electronics with the human body surely elicits in most people a sense that we have crossed a boundary that shouldn’t be crossed. But explaining how and why is not easy. After all, most of us have no problem with prosthetic limbs, even those directly actuated by the brain, nor with pace makers, cochlear implants, or any of the other now long domesticated, implantable, artificial, electronic devices that we use to enhance and prolong life. Should we think differently about merely shrinking the scale of the implants and increasing the computing power? “Proceed with caution” is good advice with almost all technical innovations. But “do not enter” seems more the sentiment of many when first confronted by the prospect of such enhanced human-electronic integration. Why?

One guess is that boundaries are important for defining personhood, the skin being the first and most salient. Self is what lies within; other is without. The topologically simple “interface” allows us still to preserve a notion of boundedness, even if some of the boundaries are wholly under the skin, as with a pacemaker. But the boundedness of the person is at risk with integrated nanoscale electronics.

Control is surely another important issue implicated by enhanced human-electronic integration. One of the main points of the new research is precisely to afford greater capabilities for control from the outside. The aim, at present, is therapeutic, as with our current abilities to recharge and reprogram a pacemaker via RF signals. But anxieties about loss of control already arise with such devices, as witness Dick Cheney’s turning off the wi-fi capability in his implanted defibrillator. Integrated nanoscale electronics brings with it the technical possibility of much more extensive and intrusive interventions running the gamut from malicious hacking to sinister social and psychological manipulation.

Integrity might name another aspect of personhood put at risk by the dissolution of the machine-human distinction. But it is harder to explain in non-metaphorical terms wherein this integrity consists – “oneness” and “wholeness” are just synonyms, not explicanda – and, perhaps for that reason, it is harder to say exactly how integrated nanoscale electronics threatens the integrity of the human person. After all, the reason why such technology is novel and important is, precisely, that it is so deeply and thoroughly integrated with the body. A machine-human hybrid wouldn’t be less integrated, it would just be differently integrated. And it can’t be that bodily and personal integrity are threatened by the mere incorporation of something alien within the body, for then a hip replacement or an organ transplant would equally threaten human integrity, as would a cheese sandwich.

A blurring or transgressing of bodily boundaries and a loss of personal control are both very definitely threatened by one of the more noteworthy technical possibilities deriving from integrated nanoscale electronics, which is that wired bodies can be put into direct communication with one another all the way down at the cellular level and below. If my doctor can get real-time data about the performance of an implanted, wired organ and can reprogram some of its functions, then it’s only a short step to my becoming part of a network of linked human computers. The technical infrastructure for creating the Borg Collective has arrived. You will be assimilated. Resistance is futile. Were this our future, it would entail a radical transformation in the concept of human personhood, one dense with implications for psychology, philosophy, theology, and even the law.

Or would it? We are already, in a sense, spatially extended and socially entangled persons. I am who I am thanks in no small measure to the pattern of my relationships with others. Today those relationships are mediated by words and pheromones. Should adding Bluetooth make a big difference? This might be one of those situations in which a difference of degree becomes a difference in kind, for RF networking down to the nanoscale would bring with it dramatically enhanced capabilities for extensive, real-time, coordination.

On the other hand, science in an entirely different domain has recently forced us to think about the possibility that the human person really is and always has been socially networked, not an atomic individual, and this at a very basic, biological level. Study of what is termed the “human microbiome,” the microbial ecosystem that each of us hosts, has made many surprising new discoveries. For one thing, we now understand that there are vastly more microbial genes contained within and upon our bodies than somatic genes. In that sense, I am, from a genetic point of view, much more than just my “own” DNA, so much so that some thinkers now argue that the human person should be viewed not as an individual, but as a collective. Moreover, we are learning that our microbes are crucial to much more than just digestion. They play a vital role in things like mood regulation, recent work pointing to connections between, say, depression and our gut bacteria colonies, microbial purges and transplants now being suggested as therapies for psychological disorders. This is interesting because we tend to think of mood and state of mind as being much more intimately related to personhood than the accident of the foodstuffs passing through our bodies. There is new evidence that our microbes play an essential role in immune response. One study released just a couple of days ago suggested a role for gut bacteria in cases of severe rheumatoid arthritis, for example (Scher et al. 2013). This is interesting because the immune system is deeply implicated in any discussion of the self-other distinction.

Most relevant to the foregoing discussion, however, is new evidence that our regularly exchanging microbes when we sneeze, shake hands, and share work surfaces does much more than communicate disease. It establishes enduring, shared, microbial communities among people who more regularly group together, from families, friends, and office mates to church groups and neighborhoods. And some researchers think that this sharing of microbial communities plays a crucial role in our subtle, only half-conscious sense of wellness and belonging when we are with our family and friends rather than total strangers. Indeed, the definition of “stranger” might now have to be “one with whom I share comparatively few microbial types.” In other words, my being as part of my essence a socially networked individual might already occur down at the microbial level. If so, that is important, because it means that purely natural, as opposed to artificial, circumstances already put serious pressure on the notion of the self as something wholly contained within one’s skin.

We started with my challenging the notion of the “interface” as the most helpful metaphor for understanding the ever more sophisticated interminglings of computers and biological humans that are now within our technical reach. We talked about new technologies for growing artificial human tissue with embedded, nanoscale, biocompatible wiring, which implies a deep integration of electronics and computing of a kind that annihilates the distinction between human and the machine, perhaps also the distinction between the natural and the artificial. And we ended with a vision of such wired persons becoming thereby members of highly interconnected social networks in which the bandwidth available for those interconnections is such as perhaps to make obsolete the notion of the atomic individual.

We face a new world. It simply won’t do to stamp our feet and just say “no.” The technology will move forward at best only a little slowed down by fretting and harangue from the humanists. The important question is not “whether?”, but “how?” Philosophers, theologians, and thoughtful people of every kind, including scientists and engineers, must be part of that conversation.

References

Melnick, Meredith (2012). “Cancer Patient Gets World’s First Artificial Trachea.” Time Magazine, July 8, 2012. http://healthland.time.com/2011/07/08/cancer-patient-gets-worlds-first-artificial-trachea/

Scher, J. U. et al. (2013). “Expansion of Intestinal Prevotella copri Correlates with Enhanced Susceptibility to Arthritis. eLife 2 (0): e01202 DOI: 10.7554/eLife.01202#sthash.b3jK5FW4.dpuf

Tian, Bozhi et al. (2012). “Macroporous Nanowire Nanoelectronic Scaffolds for Synthetic Tissues.” Nature Materials 11, 986-994.